Home > Stochastic Calculus of Variations > Toán tử Ornstein-Uhlenbeck

Toán tử Ornstein-Uhlenbeck


Trường hợp hữu hạn chiều

Cho không gian xác suất (\mathbb{R}^m, \mathfrak{B}(\mathbb{R}^m), \mu ) với \mathfrak{B}(\mathbb{R}^m)\sigma-đại số Borel trên \mathbb{R}^m\mu là độ đo Gauss:

\displaystyle\mu(dx)=\frac{1}{(2\pi)^{m/2}} e^{-|x|^2/2}dx.

Xét phương trình vi phân ngẫu nhiên

\displaystyle dX_t=\sqrt{2}dW_t-X_tdt, với W_t là quá trình Wiener trong \mathbb{R}^m.

Áp dụng công thức Ito thế thì

\displaystyle X_t(x)=e^{-t}x+\sqrt{2}\int_0^t e^{-(t-s)}dW_s.

Ta định nghĩa toán tử P_t xác định trên L^p(\mathbb{R}^m, \mu), p\ge 1

\displaystyle P_t f(x)=\mathbf{E}(f(X_t(x))=\int_{\mathbb{R}^m} f(e^{-t}x+\sqrt{1-e^{-2t}}y)\mu(dy), \ t\ge 0.

Các tính chất đẹp:

1. P_t là toán tử nửa nhóm trên L^p(\mathbb{R}^m, \mu)

2. \displaystyle \| P_tf(x)\|_{L^p(\mathbb{R}^m, \mu)} \le \| f\|_{L^p(\mathbb{R}^m, \mu)}, p\ge 1

3. P_t là toán tử đối xứng trên L^2(\mathbb{R}^m, \mu)

4.  P_t thu hẹp trên C_b^2(\mathbb{R}^m) có  infinitesimal generator là L_m=\Delta-x.\nabla

Mở rộng trên không gian Hilbert khả tách

Giả sử không gian Hilbert khả tách \mathcal H ứng với tích vô hướng \langle.,.\rangle và chuẩn \|.\| tương ứng.  Thế thì tồn tại không gian xác suất (\Omega, \mathcal{G},\mu) cùng với quá trình ngẫu nhiên (W_h)_{h\in \mathcal H} tuyến tính theo quỹ đạo và ứng với mỗi h cố định thì W_h là biến ngẫu nhiên Gauss hơn nữa \mathbf{E}(W_h)=0, \mathbf{cov}(W_{h_1}W_{h_2})=\langle h_1, h_2\rangle . Xét (e_1,e_2,...) là cơ sở trực chuẩn của \mathcal H.

Trên không gian L^p(\Omega, \mu), p\ge 1 các biến ngẫu nhiên khả tích bậc p, xác định toán tử

\displaystyle P_t F=\int_{\Omega}F(e^{-t}\omega +\sqrt{1-e^{-2t}}\chi)\mu(d\chi), \ t\ge 0.

Các tính chất (1-2-3) trong trường hợp hữu hạn chiều P_t vẫn đúng trên (\Omega, \mathcal{G},\mu).

Với bộ chỉ số a=(a_1,a_2,...),\ a_i\in \mathbb{Z_+}, đặt

trong đó sử dụng kí hiệu đa thức Hermite
\displaystyle H_n(x)=\frac{1}{n!}\frac{d^n}{dt^n}\left. e^{-t^2/2+tx}\right|_{t=0}.

Không khó khăn để kiểm tra (H_a) lập thành cơ sở trực chuẩn của L^2(\Omega,\mathcal G, \mu).

Kí hiệu \mathcal{W}_n là không gian con đóng của không gian Hilbert L^2(\Omega,\mathcal G, \mu) sinh bởi hệ trực chuẩn (H_a, \sum_{k=1}^{\infty}{|a_k|}=n). Khi đó ta có biểu diễn hỗn độn Wiener
L^2(\Omega,\mathcal G, \mu)=\bigoplus_{n=0}^{\infty} \mathcal{W}_n
và không gian \mathcal{W}_n gọi là hỗn độn Wiener thứ \displaystyle n.

Toán tử P_t được phân tích theo các toán tử chiếu trực giao \displaystyle J_n từ \displaystyle L^2(\Omega,\mathcal G, \mu) xuống  \displaystyle \mathcal{W}_n như sau

với F\in L^2(\Omega,\mathcal G, \mu)

Ta xác định được

là infinitesimal generator của toán tử nửa nhóm P_t thu hẹp trên miền

L được gọi là toán tử Ornstein-Uhlenbeck, nó cùng với đạo hàm Malliavin và tích phân Skorohod là 3 toán tử nền tảng nhất của ngành Biến phân ngẫu nhiên.

  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: